Analysis of KDD CUP 99 Dataset using Clustering based Data Mining

نویسنده

  • Mohammad Khubeb Siddiqui
چکیده

The KDD Cup 99 dataset has been the point of attraction for many researchers in the field of intrusion detection from the last decade. Many researchers have contributed their efforts to analyze the dataset by different techniques. Analysis can be used in any type of industry that produces and consumes data, of course that includes security. This paper is an analysis of 10% of KDD cup’99 training dataset based on intrusion detection. We have focused on establishing a relationship between the attack types and the protocol used by the hackers, using clustered data. Analysis of data is performed using k-means clustering; we have used the Oracle 10g data miner as a tool for the analysis of dataset and build 1000 clusters to segment the 494,020 records. The investigation revealed many interesting results about the protocols and attack types preferred by the hackers for intruding the networks. Keyword: KDD 99 dataset, clustering, k-means, intrusion detection

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

An Efficient NIDS by using Hybrid Classifiers Decision Tree & Decision Rules

In the field of internet, network based application plays a vital role, where data transfers mostly in digital forms in various formats from source to destinations. In this digital exchange of information there are several possibilities of attacks and vulnerabilities. Intrusion detection systems are widely used to protect networks. An efficient detection of intrusion from network data set is a ...

متن کامل

Efficient Intrusion Detection Using Principal Component Analysis

Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the number of machine learning algorithms applied to KDD 99 cup, none of them have introduced a pre-model to reduce the huge information quantity present in the different KDD 99 datasets. We introduce a method that applies to the different datasets before performing any of the different ...

متن کامل

Network Intrusion Detection Using Hybrid Simplified Swarm Optimization and Random Forest Algorithm on Nsl-Kdd Dataset

During the last decade the analysis of intrusion detection has become very significant, the researcher focuses on various dataset to improve system accuracy and to reduce false positive rate based on DAPRA 98 and later the updated version as KDD cup 99 dataset which shows some statistical issues, it degrades the evaluation of anomaly detection that affects the performance of the security analys...

متن کامل

The main essence of using statistical methods for outlier detection in anomaly-based approach lies in analyzing and mining information from raw data, to improve learning

Intrusion detection is an effective mechanism to deal with challenges in network security. The rapid development in networking technology has raised the need for an effective intrusion detection system (IDS) as traditional intrusion detection methods cannot compete against the newly advanced intrusion attacks. With increasing number of data being transmitted daily to/from a network, the system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013